Posts Tagged with "ISO 26262"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

FTAのtree logic (4)

posted by sakurai on December 6, 2024 #907

この65項の積項から成る論理式が簡単化できるか、ChatGPTに聞いてみます。


以下は与えられた論理式(縦方向がOR、行中のコンマでAND)の因数分解結果です。

(略)

集合Aを $$ A := \{BE001\_01, BE001\_02, BE001\_03, BE001\_05, BE001\_09, BE014\_01, BE027, BE028\} $$ とし、集合Bを $$ B := \{BE002\_01, BE002\_02, BE002\_03, BE002\_09, BE002\_15, BE015\_01, BE030, BE031\} $$ とすると、上記64行はすべて$(a \land b)$で$a \in A, b \in B$の組み合わせによる全ての直積を網羅しています(8×8=64)。

従って、64行分は以下のように因数分解できます。

$$ \bigvee_{a \in A}\bigvee_{b \in B}(a \land b) \\ = (BE001\_01 \lor BE001\_02 \lor BE001\_03 \lor BE001\_05 \lor BE001\_09 \lor BE014\_01 \lor BE027 \lor BE028) \\ \land (BE002\_01 \lor BE002\_02 \lor BE002\_03 \lor BE002\_09 \lor BE002\_15 \lor BE015\_01 \lor BE030 \lor BE031) $$

さらに、元の式にはこれら64個のAND項に加えて1行目に単独のリテラル$BE025$で存在するので、全式は次のようになります。

$$ BE025\\ \bigl((BE001\_01 \lor BE001\_02 \lor BE001\_03 \lor BE001\_05 \lor BE001\_09 \lor BE014\_01 \lor BE027 \lor BE028)\\ \land (BE002\_01 \lor BE002\_02 \lor BE002\_03 \lor BE002\_09 \lor BE002\_15 \lor BE015\_01 \lor BE030 \lor BE031)\bigr) $$

これが要求された因数分解後の論理式です。


この論理式をFT図にすれば過去記事のとおり、次の図のようになります。

図29.1
図29.1 因数分解後のMCS

BE001はメインマイコンであり、BE001_*はメインマイコン各部のフォールトです。さらに、BE002はサブマイコンであり、BE002_*はサブマイコン各部のフォールトです。

従って、このFTはメインマイコン各部とサブマイコン各部のフォールトがいずれか一個の計2個起きるか、またはPCB上の電源ICがフォールト(BE025)するかのいずれかであり、マイコンとしては冗長構成をとる、安全性の高い回路となっていることがわかります。


左矢前のブログ 次のブログ右矢

11月の検索結果

posted by sakurai on December 4, 2024 #906

弊社コンテンツの11月の検索結果です。

表906.1 上昇率上位のページ(前月との比較)
タイトル クリック数
PMHFの意味 +53
レイテントフォールトのご質問 +29
SPFM, LFM, PMHFの計算法の例 +25

表906.2 パフォーマンス上位のページ
タイトル クリック数
機能安全用語集 203
1st Editionと2nd Editionとの相違点 (Part 10) 136
SPFM, LFM, PMHFの計算法の例 99

表906.3 上昇率上位のクエリ
クエリ クリック数
従属故障分析 +10
レイテントフォールトとは +8
ASIL Decomposition +6

表906.4 パフォーマンス上位のクエリ
クエリ クリック数
FTTI 62
レイテントフォールトとは 31
PMHF 23


左矢前のブログ 次のブログ右矢

FTAのtree logic (3)

posted by sakurai on December 3, 2024 #905

3項以上の積項をカットします。その理由は3つ以上のフォールトが重なる確率は非常に低いため、規格上は安全フォールトとなっているためです。カットするには図905.1のように、Size <= 2と入力します。

図%%.1
図905.1 スライス入力

すると、積項数は図905.2のように65個となります。頂上事象侵害確率は$6.543\times10^{-5}$で前ページと変わりません。

図%%.2
図905.2 枝刈り後のMCS

左矢前のブログ 次のブログ右矢

FTAのtree logic (2)

posted by sakurai on December 2, 2024 #904

前ページのロジックのMCSを取得したものを図904.1に示します。積項数は110個となりました。

図%%.1
図904.1 logic tree

左矢前のブログ 次のブログ右矢

FTAのtree logic

posted by sakurai on November 29, 2024 #903

前記事#28のFT図の論理を再構成しました。これはトランスファーゲートを多用したもので、具体的にはメインマイコン系とサブマイコン系の故障木が何回も現れるので、最初の木はそのまま構成し名前を付け、2度目以降は出てきた場合にはその名前の木に飛ばす機能を持つゲートを用います。

図903.1のうち赤上↑がトランスファーゲートで、既に出てきている同じ木であることを意味します。

図%%.1
図903.1 logic tree

左矢前のブログ 次のブログ右矢

10月の検索結果

posted by sakurai on November 6, 2024 #888

弊社コンテンツの10月の検索結果です。

表888.1 上昇率上位のページ(前月との比較)
タイトル クリック数
故障分類 +74
SPFM, LFM, PMHFの計算法の例 +72
レイテントフォールトの奥深さ +39

表888.2 パフォーマンス上位のページ
タイトル クリック数
1st Editionと2nd Editionとの相違点 (Part 10) 226
機能安全用語集 199
ASILデコンポジション 115

表888.3 上昇率上位のクエリ
クエリ クリック数
FTTI +27
レイテント +11
FTTI FHTI +9

表888.4 パフォーマンス上位のクエリ
クエリ クリック数
FTTI 107
PMHF 31
SPFM 23


左矢前のブログ 次のブログ右矢

PMHFの導出の動画

posted by sakurai on November 5, 2024 #887

PMHFの算出法について以下の動画を見つけました。どうやらコンサル会社のビデオのようです。https://youtu.be/ndG1Kcc89hs

メディニアナライザを使用したようですが、PMHFの値は一見して誤っています。

図%%.1
図887.1 結果レポート

表の数値を見る限り、計算方法はSPFとDPFを加えて $$ PMHF=\lambda_\text{SPF}+\lambda_\text{MPF, latent} $$ となっているようです。

この誤りは大変多く、過去にも

と複数あり、それらの誤りは以下の論文$\dagger$が元凶のようです。

一方、以下に前記事にもあるようにPart 5のAnnex Fに掲載されている近似式を示します。 $$ PMHF=\lambda_\text{SPF}+\lambda_\text{MPF, latent}\cdot\lambda_\text{MPF, detected}\cdot T_\text{lifetime} $$ この式はSPFとDPFをそれぞれを正しく確率に直してから加え、最後に車両寿命で割っています。そのことは両辺に車両寿命をかけると良く分かります。

それにしてもPMHFを算出する人たちはなぜ規格Part 10の、もしくはPart 5(上記)の式を用いずに、誤りの論文$\dagger$の式を参照するのでしょうか?参考にするならせめて規格式を参考にすれば良いと思うのですが。


$\dagger$ † Y. Chang, L. Huang, H. Liu, C. Yang and C. Chiu, "Assessing automotive functional safety microprocessor with ISO 26262 hardware requirements," Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, Hsinchu, 2014, pp. 1-4, doi: 10.1109/VLSI-DAT.2014.6834876.


左矢前のブログ 次のブログ右矢

posted by sakurai on November 4, 2024 #886

備忘のために表題の「2nd SMのASILの引き下げ」について記します。ISO 26262ではセレクトハイ原則やFFI等の原則で、低ASILエレメントが高ASILエレメントに影響を及ぼすことが禁止されています。そのような場合は低ASILエレメントはASILを引き上げるべきです。

一方その原則の例外があり、有名なものは「ASILデコンポジション」です。ところでこの用語は厳密には正しくなく、本来は「要求分割(デコンポジション)により結果的にASILが分割される」ものであり、ASILを任意に分割するものではありません。

この他に表記の場合の例外があります。Part 4 6.4.2はシステム設計における安全機構の要件を示したもので、6.4.2.1及び6.4.2.2が「フォールトを検出及び機能安全要求を侵害するシステムの出力に存在する故障を防止又は緩和する安全機構」、つまり1st SMについての要件です。さらに6.4.2.3~6.4.2.5が「フォールトがレイテント状態になるのを防止する安全機構」、つまり2nd SMについての要件です。

ここで6.4.2.5において、2nd SMとしてのみ働くエレメントのASILは以下のように引き下げることが可能と書かれています。以下は規格に書かれていない文言をカッコ内に補って記述しています。

Part 4 - 6.4.2.5

  • (IFまたは1st SMに)割りつけられた安全要求のASILがASIL-Dのとき、その2nd SMはASIL-B
  • (IFまたは1st SMに)割りつけられた安全要求のASILがASIL-BまたはASIL-Cのとき、その2nd SMはASIL-A
  • (IFまたは1st SMに)割りつけられた安全要求のASILがASIL-Aのとき、その2nd SMはQM

すなわち、ASIL-Bを除きASILを2段階引き下げることが可能です。ASIL-Bの時は1段階となります。


左矢前のブログ 次のブログ右矢

posted by sakurai on October 30, 2024 #884

図%%.1

On October 29, 2024, FS Micro Corporation※1 announced that a research paper by President and CEO Atsushi Sakurai has been accepted at RAMS※2, an international conference organized by the IEEE※3 Reliability Society.

This marks the sixth consecutive year that a paper by Atsushi Sakurai has been accepted at RAMS. The paper is scheduled for presentation at RAMS 2025, to be held on January 28, 2025, in Florida, USA.

図%%.2

This paper focuses on the PMHF※4 formula in ISO 26262※5. In ISO 26262, the PMHF is positioned as a critical metric for evaluating the safety of automotive systems, yet its derivation process is not thoroughly explained. Since 2011, Atsushi Sakurai has been addressing this issue and proposed a more accurate formula for the PMHF at RAMS 2020.

In this paper, the behaviors of the two stochastic processes, the PUA※6 and the PUD※7, under periodic inspection are analyzed in detail, and rigorous formulas for these processes are derived. Furthermore, the paper compares the rigorous formulas with the proposed approximate formulas, demonstrating the effectiveness of the approximate formulas in practical PMHF calculations.

The proposed PMHF formula provides higher accuracy while also allowing for improved design constraints. Therefore, this research is expected to make a significant contribution to enhancing the reliability of automotive systems.

図%%.3

Notes
※1: FS Micro Corporation (Headquarters: Nagoya, Japan; President and CEO: Atsushi Sakurai) is a consulting firm specializing in functional safety (a methodology for ensuring that equipment function correctly by implementing various safety measures) for automotive systems.
※2: RAMS (the Reliability and Maintainability Symposium) is an international conference on reliability engineering held annually by the IEEE Reliability Society. The 71st conference will take place in 2025. For more information: https://rams.org/
※3: IEEE is the abbreviation for the Institute of Electrical and Electronics Engineers, the world's largest professional technical organization dedicated to advancing technology. For more information: https://ieee.org/
※4: PMHF stands for Probabilistic Metric for Random Hardware Failures, a key metric under ISO 26262. It represents the time-averaged probability of hazardous system failures over a vehicle’s lifetime.
※5: ISO 26262 is an international standard for functional safety of automotive electronic and electrical systems, aiming to reduce the risk of hazardous events occurring while driving to an acceptable level due to system failures.
※6: PUA or the Point Unavailability, one of the stochastic processes that define the PMHF. It represents the probability that a system is in a failed state at a specific point in time.
※7: PUD or the Point Unavailability Density, another stochastic process that defines the PMHF. It represents the probability density of unavailability.


Contact Information
Company Name:     FS Micro Corporation
Representative:      Atsushi Sakurai
Date of Establishment:  August 21, 2013
Capital:         32 million yen
Business Description:  Consulting services and seminars on functional safety for automotive electronic devices in compliance with ISO 26262
Head Office Address:   4-1-57 Osu, Naka-ku, Nagoya, Aichi 460-0011, Japan
Phone:         +81-52-263-3099
Email:          info@fs-micro.com
URL:          https://fs-micro.com/


左矢前のブログ 次のブログ右矢

posted by sakurai on October 29, 2024 #883

図%%.1

2024年10月29日、FSマイクロ株式会社※1は、代表取締役桜井厚による論文が、IEEE※2 信頼性部会主催の国際学会RAMS※3 において採択されたことをお知らせします。

桜井厚の論文がRAMSに採択されるのは今回で6年連続となります。本論文は2025年1月28日に米国フロリダ州で開催されるRAMS 2025にて発表予定です。

図%%.2

本論文はISO 26262※4 のPMHF※5 公式に関する研究です。ISO 26262において、PMHFは車載システムの安全性を評価する重要な指標として位置づけられていますが、その導出過程は十分に説明されていません。桜井厚は2011年からこの課題に取り組み、RAMS 2020においてPMHFのより精度の高い式を提案しました。

本論文では、定期検査下での2つの確率関数であるPUA※6およびPUD※7の挙動を詳細に分析し、その厳密な公式を導出しています。さらに、厳密式と既提案の近似式を比較検証し、近似式が実際のPMHF計算においても有効であることを示しました。

提案するPMHF式はより精度が高い式でありながら、設計制約の改善が見込めます。そのため、本研究を通じて、提案するPMHF式が自動車の信頼性向上に大きく貢献することが期待されます。

図%%.3

【注釈】
※1:FSマイクロ株式会社 (本社:名古屋市、代表取締役:桜井厚)は車載システムの機能安全(様々な安全方策を実施することにより、機器が正しく動作することを担保する方法論)に関するコンサルティングを提供する会社です。
※2:IEEEはInstitute of Electrical and Electronics Engineers(電気電子技術者協会)の略称で、技術の進歩を推進する世界最大の専門技術組織です。詳しくはhttps://ieee.org/
※3:RAMS(the Reliability and Maintainability Symposium)は信頼性・保守性シンポジウムの略称で、IEEE信頼性部会が毎年主催する信頼性工学に関する国際会議です。第71回の会議は2025年に開催されます。詳しくはhttps://rams.org/
※4:ISO 26262は車載電気電子システムの機能安全に関する国際規格で、システムの故障により車両の運転中に危険な事象が発生するリスクを許容できる水準まで低減することを目的としています。
※5:PMHFはProbabilistic Metric for Random Hardware Failures(ハードウェアのランダム故障に対する確率的指標)です。これはISO 26262におけるハードウェアの設計目標値の一つで、車両寿命間のシステム故障の時間平均確率を表します。
※6:PUAはPoint Unavailability(点不稼働度)の略で、PMHFを定義する確率過程の一つです。特定の時点でシステムが故障状態にある確率です。
※7:PUDはPoint Unavailability Density(点不稼働度密度)の略で、PMHFを定義する確率過程の一つです。点不稼働度の確率密度を示します。


【お問い合わせ先】
会社名     FSマイクロ株式会社
代表者     桜井 厚
設立年月日   2013年8月21日
資本金     3,200万円(資本準備金を含む)
事業内容    ISO 26262車載電子機器の機能安全のコンサルティング及びセミナー
本店所在地   〒460-0011
        愛知県名古屋市中区大須4-1-57
電話      052-263-3099
メールアドレス info@fs-micro.com
URL      https://fs-micro.com/


左矢前のブログ 次のブログ右矢


ページ: